NOTE ON CURVED LITHIUM LENS

Juan C. Gallardo, BNL, Upton, NY 11973, USA

November 9, 2006

Abstract

We give the analytical expression of the magnetic field generated by an idealized bent lithium lens. The self-consistent current density vector is of the form $\mathbf{J} = \frac{J_o}{2} \left\{ \frac{R_o}{R} + \left(\frac{R_o}{R} \right)^2 \right\} \mathbf{e}_{\phi}$. All quantities have the right limit when $R_o \to \infty$.

1 INTRODUCTION

A lithium lens with an specified curvature has being proposed to be used in cooling rings to achieve transverse and longitudinal emittances appropriate for a Muon Collider [1], [2] and [3].

2 STRAIGHT LENS

An idealized model of a straight lithium lens calls for a uniform current density $\mathbf{J} = (0, J_o, 0)$ in the body of the device.

Maxwell's equation $\nabla \times \mathbf{B} = \mu_o \mathbf{J}$ implies:

$$B_r = B_z = 0$$
 and $B_\theta = \frac{\mu_o}{2\pi} \frac{I}{r} = \begin{cases} \frac{\mu_o J_o}{2} r & r < a \\ \frac{\mu_o J_o}{2} \frac{a^2}{r} & r > a \end{cases}$ (1)

where I is the total current and a is the radius of the lens.

We introduce the vector potential $\nabla \times \mathbf{A} = \mathbf{B}$ which gives

$$B_r = \frac{1}{r} \frac{\partial A_z}{\partial \phi}$$
 $B_\theta = -\frac{\partial A_z}{\partial r}$.

By observation we can write that the longitudinal component of the vector potential

$$A_z = -\frac{\mu_o}{4} J_o r^2 \,. \tag{2}$$

Note that trivially, $\nabla \cdot \mathbf{A} = 0$ and $\nabla \cdot \mathbf{B} = 0$ as it should.

3 BENT LENS

For the problem at hand it is helpful to introduce a variation of a *toroidal co-ordinate system* as shown in Fig. 1. The relation between coordinate systems is:

Figure 1: Definition of the toroidal coordinates (r, θ, ϕ) .

$$R = R_o + r\cos\theta \tag{3}$$

$$\mathbf{r} = R\cos\phi\,\mathbf{e}_{\mathbf{x}} + R\sin\phi\,\mathbf{e}_{\mathbf{y}} + r\sin\theta\,\mathbf{e}_{\mathbf{z}} \tag{4}$$

where R_o is the radius of curvature of the curved lens. We will need the scale factors [4] $h_1^2 \equiv 1$, $h_2^2 \equiv r^2$ and $h_3^2 = R^2$ and the expression for the curl of a vector \mathbf{F}

$$\nabla \times \mathbf{F} = \frac{1}{rR} \left\{ \mathbf{e_r} \left[\frac{\partial (RF_{\phi})}{\partial \theta} - \frac{\partial (rF_{\theta})}{\partial \phi} \right] \right\}$$
 (5)

$$+r \mathbf{e}_{\theta} \left[\frac{\partial F_r}{\partial \phi} - \frac{\partial (RF_{\phi})}{\partial r} \right]$$
 (6)

$$+R \mathbf{e}_{\phi} \left[\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_r}{\partial \theta} \right]$$
 (7)

(8)

and for the divergence of a vector \mathbf{F}

$$\nabla \cdot \mathbf{F} = \frac{1}{rR} \left\{ \frac{\partial (rRF_r)}{\partial r} + \frac{\partial (RF_\theta)}{\partial \theta} + \frac{\partial (rF_\phi)}{\partial \phi} \right\}$$
(9)

Now we guess an expression for the vector potential $A_{\phi}(r,\theta)$ such that in the limit $R_o \to \infty$ we recover the expression of A_z (note the change in labels of the cartesian axis).

It is natural to take $A_{\phi}(r,\theta) = -\mu_o \frac{J_o}{4} r^2 \left(\frac{R_o}{R}\right)$, then

$$B_r = \frac{1}{rR} \frac{\partial (RA_\phi)}{\partial \theta} = 0$$

$$B_\theta = -\frac{1}{R} \frac{\partial (RA_\phi)}{\partial r} = \mu_o \frac{J_o}{2} \left(\frac{R_o}{R}\right) r \quad \text{for} \quad r < a.$$
(10)

Trivially, $\nabla \cdot \mathbf{A} = 0$ and $\nabla \cdot \mathbf{B} = 0$.

Now we have to find the current density vector \mathbf{J} in this toroidal geometry; using Maxwell's equation $\nabla \times \mathbf{A} = \mu_o \mathbf{J}$ and some algebra we find $J_{\phi} = \frac{J_o}{2} \left\{ \frac{R_o}{R} + \left(\frac{R_o}{R} \right)^2 \right\}$. Obviously, in the limit $R_o \to \infty$ we obtain the correct uniform current J_o .

Distintive features of the solution \mathbf{B}_{θ} are:

- the field is zero at the center of the lithium lens (r=0)
- $B_z = -B_\theta \cos \theta$ is constant on planes of constant $x R_o = r \cos \theta$ and the magnitude increases as we move left toward the geometric center of the toroid, reaching maximum at $x_{max} = R_o a$ with magnitude $B_z = -\mu_o \frac{J_o}{2} \frac{R_o a}{R_o a}$ (see Fig. 2)

We show in Fig. 3 the magnetic field for two different radius of curvature R_o of a lithium lens with radius a = 0.1 m.

References

- [1] Y. Fukui, et.al. Overview of Recent Progress on 6D Muon Cooling with Ring Coolers, 341-v1
- [2] Y. Fukui, et.al. A Muon Cooling Ring with Curved Lithium Lenses, 328-v1

Figure 2: (Color) Plot of B_z vs $x=r\cos\theta$

Figure 3: (Color)Polar plot of B_{θ} for $R_o = 1.20 \ m$ (left) and $R_o = 0.20 \ m$ (rigth); in both cases the radius of the lithium lens is $a = 0.10 \ m$.

- [3] R. Fernow. ICOOL: a simulation code for ionization cooling of muon beams. In A. Luccio and W. MacKay, editor, *Proceedings of the 1999 Particle Accelerator Conference*, page 3020, 1999. Latest version is available at http://pubweb.bnl.gov/people/fernow/icool/readme.html.
- [4] P. Morse and H. Feshbach Methods of Theoretical Physics, page 115 Mc Graw-Hill, New York, 1953